Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Bioresour Technol ; 402: 130771, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38701981

RESUMO

A full-scale high-rate cascade anaerobic digestion (CAD) system was evaluated for its ability to enhance enzymatic sludge hydrolysis. The system included a newly built digester, innovatively divided into three pie-shaped compartments (500 m3 each), followed by an existing, larger digester (1500 m3). The system treated a mixture of waste activated sludge and primary sludge, achieving a stable total chemical oxygen demand reduction efficiency (56.1 ± 6.8 %), and enhanced sludge hydrolytic enzyme activities at a 14.5-day total solids retention time (SRT). High-throughput sequencing data revealed a consistent microbial community across reactors, dominated by consortia that govern hydrolysis and acidogenesis. Despite relatively short SRTs in the initial reactors of the CAD system, acetoclastic methanogens belonging to Methanosaeta became the most abundant archaea. ‬‬‬‬‬‬‬‬‬‬‬‬‬ This study proves that the CAD system achieves stable sludge reduction, accelerates enzymatic hydrolysis at full-scale, and paves the way for its industrialization in municipal waste sewage sludge treatment.

2.
ACS ES T Water ; 3(12): 4133-4142, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38094917

RESUMO

This study reports the effects of microaeration on a laboratory-scale AnMBR (MA-AnMBR) fed with synthetic concentrated domestic sewage. The imposed oxygen load mimics the oxygen load coming from a dissolved air flotation (DAF) unit, establishing an anaerobic digester-DAF (AD-DAF) combination with sludge recycling. Results showed a reduced COD concentration in the MA-AnMBR permeate compared with the AnMBR permeate, from 90 to 74 mgCOD L-1, and a concomitant 27% decrease in biogas production. The MA-AnMBR permeate ammonium (NH4+) concentration increased by 35%, to 740 mgNH4+-N L-1, indicating a rise in the hydrolytic capacity. Furthermore, the MA-AnMBR biomass seemingly adapted to an increased oxygen load, which corresponded to 1% of the influent COD load (approximately 55 mLO2 d-1). Concomitantly, an increase in the superoxide dismutase activity (SOD) of biomass was detected. Meanwhile, negligible changes were observed in the specific methanogenic activity (SMA) of the microaerated biomass that was subjected to an oxygen load equivalent to 3% of the influent COD load in batch tests. The obtained results showed that an AD-DAF system could be a promising technology for treating concentrated domestic wastewater, improving sewage sludge hydrolysis, and overall organic matter removal when compared to an AnMBR.

3.
Water Sci Technol ; 88(9): 2344-2363, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37966187

RESUMO

This study investigates the effects, conversions, and resistance induction, following the addition of 150 µg·L-1 of two antibiotics, sulfamethoxazole (SMX) and trimethoprim (TMP), in a laboratory-scale micro-aerated anaerobic membrane bioreactor (MA-AnMBR). TMP and SMX were removed at 97 and 86%, indicating that micro-aeration did not hamper their removal. These antibiotics only affected the pH and biogas composition of the process, with a significant change in pH from 7.8 to 7.5, and a decrease in biogas methane content from 84 to 78%. TMP was rapidly adsorbed onto the sludge and subsequently degraded during the long solids retention time of 27 days. SMX adsorption was minimal, but the applied hydraulic retention time of 2.6 days was sufficiently long to biodegrade SMX. The levels of three antibiotic-resistant genes (ARGs) (sul1, sul2, and dfrA1) and one mobile genetic element biomarker (intI1) were analyzed by qPCR. Additions of the antibiotics increased the relative abundances of all ARGs and intI1 in the MA-AnMBR sludge, with the sul2 gene folding 15 times after 310 days of operation. The MA-AnMBR was able to reduce the concentration of antibiotic-resistant bacteria (ARB) in the permeate by 3 log.


Assuntos
Sulfametoxazol , Trimetoprima , Sulfametoxazol/farmacologia , Trimetoprima/farmacologia , Esgotos/microbiologia , Anaerobiose , Antagonistas de Receptores de Angiotensina/farmacologia , Biocombustíveis , Inibidores da Enzima Conversora de Angiotensina/farmacologia , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Reatores Biológicos/microbiologia
4.
Chemosphere ; 332: 138896, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37169092

RESUMO

Full-scale thermal hydrolysis processes (THP) showed an increase in nutrients release and formation of melanoidins, which are considered to negatively impact methanogenesis during mesophilic anaerobic digestion (AD). In this research, fractionation of THP-sludge was performed to elucidate the distribution of nutrients and the formed melanoidins over the liquid and solid sludge matrix. Degradation of the different fractions in subsequent AD was assessed, and the results were compared with non-pre-treated waste activated sludge (WAS). Results showed that the THP-formed soluble melanoidins were partially biodegradable under AD, especially the fraction with molecular weight under 1.1 kDa, which was related to protein-like substances. The use of THP in WAS increased the non-biodegradable soluble chemical oxygen demand (sCOD) after AD, from 1.1% to 4.9% of the total COD. The total ammoniacal nitrogen (TAN) concentration only slightly increased during THP without AD. However, after AD, TAN released was 34% higher in the THP-treated WAS compared to non-treated WAS, i.e., 36.7 ± 0.7 compared to 27.4 ± 0.4 mgTANreleased/gCODsubstrate, respectively. Results from modified specific methanogenic activities (mSMAs) tests showed that the organics solubilised during THP, were not inhibitory for acetotrophic methanogens. However, after AD of THP-treated sludge and WAS, the mSMA showed that all analysed samples presented strong inhibition on methanogenesis due to the presence of TAN and associated free ammonia nitrogen (FAN). In specific methanogenic activities (SMAs) tests with incremental concentration of TAN/FAN and melanoidins, TAN/FAN induced strong inhibition on methanogens, halving the SMA at around 2.5 gTAN/L and 100 mgFAN/L. Conversely, melanoidins did not show inhibition on the methanogens. Our present results revealed that when applying THP-AD in full-scale, the increase in TAN/FAN remarkably had a greater impact on AD than the formation of melanoidins.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Amônia , Hidrólise , Nitrogênio , Metano , Reatores Biológicos
5.
Environ Technol ; 44(13): 1985-1995, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-34904922

RESUMO

Granular sludge processes are frequently used in domestic and industrial wastewater treatment. The granule buoyant density and biomass density are important parameters for the design and operation of granular sludge reactors. Different methods to measure the granule density include the pycnometer method, the Percoll density gradient method, the dextran blue method, and the settling velocity method. In this study, a comparison was made between these four methods to measure granule density for granules from a full-scale granular sludge plant treating domestic sewage. The effect of salinity on granule density was assessed as well. Three out of the four evaluated methods yielded comparable results, with granule buoyant densities between 1025.7 and 1028.1 kg/m3 and granule biomass densities between 71.1 and 71.5 g/L (based on volatile suspended solids (VSS)). The settling velocity method clearly underestimated the granule density, due to the complex relation between granule properties and settling velocity. The pycnometer method was the most precise method, but it was also quite susceptible to bias. The granule buoyant density increased proportionally with salinity, to 1049.2 kg/m3 at 36 g/L salinity. However, the granule biomass density, based on VSS, remained constant. This showed that the granule volume was not affected by salinity and that the buoyant density increase was the result of diffusion of salts into the granule pores. Overall, the granule density can be measured reliably with most methods, as long as the effect of salinity is considered. The results are discussed in light of operational aspects for full-scale granular sludge plants.


Assuntos
Esgotos , Purificação da Água , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos , Sais
6.
Water Res X ; 16: 100151, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35965888

RESUMO

In aerobic granular sludge (AGS) reactors, granules of different sizes coexist in a single reactor. Their differences in settling behaviour cause stratification in the settled granule bed. In combination with substrate concentration gradients over the reactor height during the anaerobic plug-flow feeding regime, this can result in functional differences between granule sizes. In this study, we compared the hydrolytic activity in granules of 4 size ranges (between 0.5 and 4.8 mm diameter) collected from a full-scale AGS installation. Protease and amylase activities were quantified through fluorescent activity assays. To visualise where the hydrolytic active zones were located within the granules, the hydrolysis sites were visualized microscopically after incubating intact and sliced granules with fluorescent casein and starch. The microbial community was studied using fluorescent in situ hybridization (FISH) and sequencing. The results of these assays indicated that hydrolytic capacity was present throughout the granules, but the hydrolysis of bulk substrates was restricted to the outer 100 µm, approximately. Many of the microorganisms studied by FISH, such as polyphosphate and glycogen accumulating organisms (PAO and GAO), were abundant in the vicinity of the hydrolytically active sites. The biomass-specific hydrolysis rate depended mainly on the available granule surface area, suggesting that different sized granules are not differentiated in terms of hydrolytic capacity. Thus, the substrate concentration gradients that are present during the anaerobic feeding in AGS reactors do not seem to affect hydrolytic activity at the granule surfaces. In this paper, we discuss the possible reasons for this and reflect about the implications for AGS technology.

7.
Water Res X ; 16: 100148, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35814501

RESUMO

Aerobic granular sludge (AGS) is an advanced biofilm-based technology for wastewater treatment. Diffusion of substrates into the granules is a key aspect of this technology. Domestic wastewater contains soluble organic substrates of different sizes that could potentially diffuse into the granules. In this study, the relation between the molecular weight of a substrate and its diffusion coefficient within the granule was studied with model substrates (polyethylene glycols (PEGs) with a molecular weight between 62 and 10 000 Da). The diffusion coefficients of the model substrates within granules from a full-scale installation were measured with the 'transient uptake of a non-reactive solute' method. The diffusion coefficients in the granules were not significantly different from the diffusion coefficients in water, at least up to 4000 Da molecular weight. This indicates that these PEGs were not obstructed by the granule matrix. The 10 kDa PEG behaved differently from the lighter PEGs, as it could not penetrate the entire granule. Furthermore, the granule structure was characterized with Environmental Scanning Electron Microscopy (ESEM). The granules displayed an open structure with large macropores and semi-solid regions, which contained microbial cells. The diffusion results suggest that most diffusing molecules were unobstructed in the macropores and barely obstructed in the semi-solid regions. Only the diffusion of the 10 kDa PEG seemed to be hindered by the semi-solid regions, but not by the macropores. Lastly, the apparent molecular weight distribution of domestic wastewater soluble COD was determined with ultrafiltration membranes of 100, 10, and 1 kDa molecular weight cut-off. The influent fractionation revealed that a large part (61-69%) of the influent soluble COD was lighter than 1 kDa. As molecules lighter than 1 kDa diffuse easily, the majority of the influent soluble COD can be considered as diffusible COD. These findings provide new insight into the availability of influent COD for granular sludge.

8.
Waste Manag ; 141: 163-172, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35123250

RESUMO

The pre-treatment of waste activated sludge (WAS) has become more common since it often results in improved bioconversion to methane, in both rate and extent. However, thorough insights on the possible effects and mechanisms of mild pre-treatment techniques, such as temperatures <100 °C combined with the addition of H2O2, are still limited. This study reports the effects of the addition of 5-30 mgH2O2/g TS and its interaction with thermal pre-treatment at 70 °C on methane production, using WAS as the substrate. It was found that the addition of H2O2 increased the methane production rate, coinciding with a decrease in apparent viscosity of WAS, which probably improved mass transfer under non-ideal mixing conditions. While H2O2 solubilized proteins and carbohydrates and mineralized a small fraction of the humic substances in WAS, these biochemical transformations did not suffice to explain the observed extent and rate of methane production. A decreased particle size, the presence of Fenton's reagent, and the presence of cationic polymers in the WAS were discarded as the reasons for the observed decrease in apparent viscosity. It was concluded that the pre-treatment conditions applied in the present study might be a strategy to enhance mixing conditions in full-scale anaerobic digesters.

9.
J Environ Manage ; 298: 113491, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34375922

RESUMO

The highly variable characteristics of waste activated sludge (WAS) hinder the comparison of experimental results on WAS bioconversion between the different studies that use excess sludge from different origin. Sludge grown under laboratory conditions with synthetic wastewater as feed showed high resistance to commonly applied pre-treatment techniques, such as thermal pre-treatment. However, a distinctly higher bioconversion of this sludge was recorded compared to WAS from a full-scale wastewater treatment plant (WWTP). The observed results casted concern on the suitability of the experimental laboratory-based data for practice. The physicochemical and biochemical characteristics of both WAS and lab-grown sludge are dependent on the wastewater characteristics or growth media on which the sludges were grown. The objective of this study was to formulate a growth medium that results into a lab-grown sludge which shows high similarity to the WAS coming from a specific full-scale WWTP in response to a pre-treatment technique. More specifically, in this study we targeted the formation of slowly-biodegradable lab-grown sludge that is similarly responsive to mild thermal pre-treatment with H2O2 addition. By comparing real and synthetic wastewaters, we discussed the various wastewater constituents that may lead to a higher degree of recalcitrance of the produced sludge. We then formulated a growth medium, which was fed to a lab-scale activated sludge reactor and evaluated the nutrient removal capacity, as well as the characteristics of the cultivated sludge before and after pre-treatment. Finally, the growth medium was modified to provoke a change in both the bioconversion and in the response to mild thermal pre-treatment. The growth medium proposed in this study resulted in a slowly-biodegradable sludge (195 ± 3.7 NLCH4/kgVSadded) that after thermal pre-treatment resulted in an increase in methane production of 9 %, which was similar to the WAS coming from the full-scale WWTP. It was concluded that not only the bioconversion but also the response to mild thermal pre-treatment of lab-grown sludge was determined by the composition of the growth media.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Peróxido de Hidrogênio , Metano , Águas Residuárias
10.
Water Res ; 202: 117398, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34252865

RESUMO

Hydrolysis is considered to be the rate-limiting step in anaerobic digestion of waste activated sludge (WAS). In this study, an innovative 4 stages cascade anaerobic digestion system was researched to (1) comprehensively clarify whether cascading configuration enhances WAS hydrolysis, and to (2) better understand the governing hydrolysis kinetics in this system. The cascade system consisted of three 2.2 L ultra-short solids retention times (SRT) continuous stirred tank reactors (CSTRs) and one 15.4 L CSTR. The cascade system was compared with a reference conventional CSTR digester (22 L) in terms of process performance, hydrolytic enzyme activities and microbial community dynamics under mesophilic conditions (35 °C). The results showed that the cascade system achieved a high and stable total chemical oxygen demand (tCOD) reduction efficiency of 40-42%, even at 12 days total SRT that corresponded to only 1.2 days SRT each in the first three reactors of the cascade. The reference-CSTR converted only 31% tCOD into biogas and suffered process deterioration at the applied low SRTs. Calculated specific hydrolysis rates in the first reactors of the cascade system were significantly higher compared to the reference-CSTR, especially at the lowest applied SRTs. The activities of several hydrolytic enzymes produced in the different stages revealed that protease, cellulase, amino peptidases, and most of the tested glycosyl-hydrolases had significantly higher activities in the first three small digesters of the cascade system, compared to the reference-CSTR. This increase in hydrolytic enzyme production by far exceeded the increase in specific hydrolysis rate, indicating that hydrolysis was limited by solids-surface availability for enzymatic attack. Correspondingly, high relative abundances of hydrolytic-fermentative bacteria and hydrogenotrophic methanogens as well as the presence of syntrophic bacteria were found in the first three digesters of the cascade system. However, in the fourth reactor, acetoclastic methanogens dominated, similarly as in the reference-CSTR. Overall, the results concluded that using multiple CSTRs that are operated at low SRTs in a cascade mode of operation significantly improved the enzymatic hydrolysis rate and extend in anaerobic WAS digestion. Moreover, the governing hydrolysis kinetics in the cascading reactors were far more complex than the generally assumed simplified first-order kinetics.


Assuntos
Reatores Biológicos , Esgotos , Anaerobiose , Hidrólise , Cinética , Metano
11.
Appl Microbiol Biotechnol ; 105(14-15): 6073-6086, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34302200

RESUMO

Complex substrates, like proteins, carbohydrates, and lipids, are major components of domestic wastewater, and yet their degradation in biofilm-based wastewater treatment technologies, such as aerobic granular sludge (AGS), is not well understood. Hydrolysis is considered the rate-limiting step in the bioconversion of complex substrates, and as such, it will impact the utilization of a large wastewater COD (chemical oxygen demand) fraction by the biofilms or granules. To study the hydrolysis of complex substrates within these types of biomass, this paper investigates the anaerobic activity of major hydrolytic enzymes in the different sludge fractions of a full-scale AGS reactor. Chromogenic substrates were used under fully mixed anaerobic conditions to determine lipase, protease, α-glucosidase, and ß-glucosidase activities in large granules (>1 mm in diameter), small granules (0.2-1 mm), flocculent sludge (0.045-0.2 mm), and bulk liquid. Furthermore, composition and hydrolytic activity of influent wastewater samples were determined. Our results showed an overcapacity of the sludge to hydrolyze wastewater soluble and colloidal polymeric substrates. The highest specific hydrolytic activity was associated with the flocculent sludge fraction (1.5-7.5 times that of large and smaller granules), in agreement with its large available surface area. However, the biomass in the full-scale reactor consisted of 84% large granules, making the large granules account for 55-68% of the total hydrolytic activity potential in the reactor. These observations shine a new light on the contribution of large granules to the conversion of polymeric COD and suggest that large granules can hydrolyze a significant amount of this influent fraction. The anaerobic removal of polymeric soluble and colloidal substrates could clarify the stable granule formation that is observed in full-scale installations, even when those are fed with complex wastewaters. KEY POINTS: • Large and small granules contain >70% of the hydrolysis potential in an AGS reactor. • Flocculent sludge has high hydrolytic activity but constitutes <10% VS in AGS. • AGS has an overcapacity to hydrolyze complex substrates in domestic wastewater.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Hidrólise
12.
Water Sci Technol ; 83(10): 2404-2413, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34032618

RESUMO

The presence of toxic compounds in wastewater can cause problems for organic matter and nutrient removal. In this study, the long-term effect of a model xenobiotic, 2-fluorophenol (2-FP), on ammonia-oxidizing bacteria (AOB), nitrite oxidizing bacteria (NOB) and phosphate accumulating organisms (PAO) in aerobic granular sludge was investigated. Phosphate (P) and ammonium (N) removal efficiencies were high (>93%) and, after bioaugmentation with 2-FP degrading strain FP1, 2-FP was completely degraded. Neither N nor P removal were affected by 50 mg L-1 of 2-FP in the feed stream. Changes in the aerobic granule bacterial communities were followed. Numerical analysis of the denaturing gradient gel electrophoresis (DGGE) profiles showed low diversity for the ammonia monooxygenase (amoA) gene with an even distribution of species. PAOs, including denitrifying PAO (dPAO), and AOB were present in the 2-FP degrading granules, although dPAO population decreased throughout the 444 days reactor operation. The results demonstrated that the aerobic granules bioaugmented with FP1 strain successfully removed N, P and 2-FP simultaneously.


Assuntos
Reatores Biológicos , Nitrificação , Nitrogênio , Fosfatos , Esgotos , Águas Residuárias
13.
Biotechnol Bioeng ; 118(3): 1273-1285, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33283262

RESUMO

Biofilm and granular sludge processes depend on diffusion of substrates. Despite their importance for the kinetic description of biofilm reactors, biofilm diffusion coefficients reported in literature vary greatly. The aim of this simulation study was to determine to what extent the methods that are used to measure diffusion coefficients contribute to the reported variability. Granular sludge was used as a case study. Six common methods were selected, based on mass balances and microelectrodes. A Monte Carlo simulation was carried out to determine the theoretical precision of each method, considering the uncertainty of various experimental parameters. A model-based simulation of a diffusion experiment was used to determine the theoretical accuracy as a result of six sources of error: solute sorption, biomass deactivation, mass transfer boundary layer, granule roughness, granule shape, and granule size distribution. Based on the Monte Carlo analysis, the relative standard deviation of the different methods ranged from 5% to 61%. In a theoretical experiment, the six error sources led to an 37% underestimation of the diffusion coefficient. This highlights that diffusion coefficients cannot be determined accurately with existing experimental methods. At the same time, the need for measuring precise diffusion coefficients as input value for biofilm modeling can be questioned, since the output of biofilm models has a limited sensitivity toward the diffusion coefficient.


Assuntos
Fenômenos Fisiológicos Bacterianos , Biofilmes/crescimento & desenvolvimento , Simulação por Computador , Modelos Biológicos , Esgotos/microbiologia
14.
Water Sci Technol ; 82(4): 627-639, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32970616

RESUMO

Despite aerobic granular sludge wastewater treatment plants operating around the world, our understanding of internal granule structure and its relation to treatment efficiency remains limited. This can be attributed in part to the drawbacks of time-consuming, labor-intensive, and invasive microscopy protocols which effectively restrict samples sizes and may introduce artefacts. Time-domain nuclear magnetic resonance (NMR) allows non-invasive measurements which describe internal structural features of opaque, complex materials like biofilms. NMR was used to image aerobic granules collected from five full-scale wastewater treatment plants in the Netherlands and United States, as well as laboratory granules and control beads. T1 and T2 relaxation-weighted images reveal heterogeneous structures that include high- and low-density biofilm regions, water-like voids, and solid-like inclusions. Channels larger than approximately 50 µm and connected to the bulk fluid were not visible. Both cluster and ring-like structures were observed with each granule source having a characteristic structural type. These structures, and their NMR relaxation behavior, were stable over several months of storage. These observations reveal the complex structures within aerobic granules from a range of sources and highlight the need for non-invasive characterization methods like NMR to be applied in the ongoing effort to correlate structure and function.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Aerobiose , Reatores Biológicos , Espectroscopia de Ressonância Magnética , Países Baixos
15.
Biotechnol Bioeng ; 117(12): 3809-3819, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32725888

RESUMO

Aerobic granular sludge (AGS) technology allows simultaneous nitrogen, phosphorus, and carbon removal in compact wastewater treatment processes. To operate, design, and model AGS reactors, it is essential to properly understand the diffusive transport within the granules. In this study, diffusive mass transfer within full-scale and lab-scale AGS was characterized with nuclear magnetic resonance (NMR) methods. Self-diffusion coefficients of water inside the granules were determined with pulsed-field gradient NMR, while the granule structure was visualized with NMR imaging. A reaction-diffusion granule-scale model was set up to evaluate the impact of heterogeneous diffusion on granule performance. The self-diffusion coefficient of water in AGS was ∼70% of the self-diffusion coefficient of free water. There was no significant difference between self-diffusion in AGS from full-scale treatment plants and from lab-scale reactors. The results of the model showed that diffusional heterogeneity did not lead to a major change of flux into the granule (<1%). This study shows that differences between granular sludges and heterogeneity within granules have little impact on the kinetic properties of AGS. Thus, a relatively simple approach is sufficient to describe mass transport by diffusion into the granules.


Assuntos
Esgotos/microbiologia , Eliminação de Resíduos Líquidos , Purificação da Água , Aerobiose
16.
Water Res ; 181: 115924, 2020 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-32492593

RESUMO

Aerobic granular sludge (AGS) technology is an alternative to conventional activated sludge to reduce the process footprint and energy consumption. Strategies for the efficient management of its produced biomass, that is grown in a granular morphology as well, need further development. Anaerobic digestion (AD) is commonly applied in waste activated sludge (WAS) treatment and is a potential option also for produced AGS treatment. In earlier studies, the biochemical methane potential of AGS was found lower than that of WAS both grown in full-scale municipal wastewater treatment systems. In order to understand this difference, this study aimed to investigate the anaerobic conversion of structural extracellular polymeric substances (SEPS), which is a type of gel-forming biopolymer, being responsible for the aggregation of sludge. Using WAS and AGS as substrates, a comparative AD batch experiment was performed for 44 days during which the SEPS fraction was extracted from both types of sludge. The changes in the SEPS chemical composition was analysed by Fourier transformed infrared spectroscopy and three-dimensional excitation and emission matrix analysis. In addition, the mechanical strength of hydrogels of extracted polymers cross-linked with Ca2+ ions was investigated by dynamic mechanical analysis. Results showed that the amount of SEPS was reduced by 26% in AGS (SEPSAGS) and by 41% in WAS (SEPSWAS), respectively. Polysaccharides and, to a lesser extent, the proteins in the SEPSAGS were more refractory compared to those in SEPSWAS. This resulted in a lower loss of the gel stiffness of SEPSAGS than that of SEPSWAS during the AD process. Moreover, the release of SEPS from tightly bound EPS to loosely bound EPS were observed in both types of sludge, but that in AGS exhibited a lower transition rate. The observed properties explain the distinct differences in anaerobic biodegradability, the slower decomposition of the sludge structure, as well as the better dewaterability of AGS as compared to WAS after the AD process.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Biopolímeros , Matriz Extracelular de Substâncias Poliméricas , Águas Residuárias
17.
Water Res ; 173: 115617, 2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32070832

RESUMO

Full-scale aerobic granular sludge technology under the trade name Nereda® has been implemented for municipal, as well as industrial wastewater treatment. Owing to the operational reactor procedures, two types of waste aerobic granular sludge can be clearly distinguished: 1) aerobic granular sludge selection discharge (AGS-SD) and 2) aerobic granular sludge mixture (AGS-RTC). This study systematically compared the anaerobic biodegradability of AGS-SD and AGS-RTC under mesophilic conditions. Results were further compared with the anaerobic conversion of waste activated sludge (WAS) as well as primary sludge (PS) from full-scale municipal wastewater treatment plants. Analysis showed similar chemical characteristics for AGS-SD and PS, which were both characterized by a high carbohydrate content (429 ± 21 and 464 ± 15 mg glucose/g VS sludge, respectively), mainly cellulosic fibres. Concurrently, AGS-RTC exhibited chemical properties close to WAS, both characterized by a relatively high protein content, which were individually 498 ± 14 and 389 ± 15 mg/g VS sludge. AGS-SD was characterized by a high biochemical methane potential (BMP) (296 ± 15 mL CH4/g VS substrate), which was similar to that of PS, and remarkably higher than that of AGS-RTC and WAS. Strikingly, the BMP of AGS-RTC (194 ± 10 mL CH4/g VS substrate) was significantly lower than that of WAS (232 ± 11 mL CH4/g VS substrate). Mechanically destroying the compact structure of AGS-RTC only accelerated the methane production rate but did not significantly affect the BMP value. Results indicated that compared to WAS, the proteins and carbohydrates in AGS-RTC were both more resistant to anaerobic bio-degradation, which might be related to the presence of refractory microbial metabolic products in AGS-RTC.


Assuntos
Esgotos , Águas Residuárias , Aerobiose , Reatores Biológicos , Metano , Eliminação de Resíduos Líquidos
18.
Environ Technol ; 40(2): 192-201, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28967292

RESUMO

Sludge predation by aquatic worms results in an increased sludge reduction rate, which is mainly due to the specific removal of a protein fraction from the sludge. As microorganisms play an essential role in sludge hydrolysis a better understanding of the microbial community involved in the worm predation process will provide more insight into the relations between the aquatic worms, their associated microbiome and the efficient sludge reduction. In this study, the microbial community associated with predation by the Tubifex tubifex was investigated. The microbial diversity in the samples of the worm faeces (WF), predated activated sludge and protein-rich substrates were compared. The results indicated that predation on sludge resulted in a microbial change from Actinobacteria (44%) in the sludge, to Proteobacteria (64%) and Bacteriodites (36%) in the WF. Interestingly, the faecal microbial community was more related to the community in (predated) protein-rich substrates than to the community in predated or endogenously respirated activated sludge samples. This similar microbial community could be due to microbial utilisation of protein hydrolysis products. Alternatively, conditions in the worm gut could facilitate a protein hydrolysing community which assists in protein hydrolysis. The genera Burkholderiales, Chryseobacterium and Flavobacterium were found to be associated with predation by T. tubifex.


Assuntos
Microbiota , Oligoquetos , Animais , Reatores Biológicos , Esgotos , Eliminação de Resíduos Líquidos
19.
Water Res ; 149: 86-97, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30419470

RESUMO

This study aimed to characterise the gas-liquid flow and mixing behaviour in a gas-mixed anaerobic digester by improving phase interaction modelling using Computational Fluid Dynamics (CFD). A 2D axisymmetric model validated with experimental data was set up using an Eulerian-Eulerian method. Uncertainty factors, including bubble size, phase interaction forces and liquid rheology were found to significantly influence the flow field. A more reliable and complete validation was obtained by critical comparison and assessment of the referred experimental data, compared to the models reported in other studies. Additionally, justifiable corrections and predictions in detail were obtained. Mixing was evaluated by trajectory tracking of a large number of particles based on an Euler-Lagrange method. The mixing performance approximated to a laminar-flow reactor (LFR) that distinctly deviated from expected continuous stirred tank reactor (CSTR) design, indicating limited enhancement from the applied gas-sparging strategy in the studied digester. The study shows the importance of a proper phase-interaction description for a reliable hydrodynamic characterisation and mixing evaluation in gas-mixed digesters. Validations, bend to experimental data without a critical assessment, may lead to an inaccurate model for further scaled-up applications.


Assuntos
Reatores Biológicos , Hidrodinâmica , Anaerobiose , Reologia , Incerteza
20.
J Water Health ; 16(2): 233-243, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29676759

RESUMO

Bathers release bacteria in swimming pool water, but little is known about the fate of these bacteria and potential risks they might cause. Therefore, shower water was characterized and subjected to chlorination to identify the more chlorine-resistant bacteria that might survive in a chlorinated swimming pool and therefore could form a potential health risk. The total community before and after chlorination (1 mg Cl2 L-1 for 30 s) was characterized. More than 99% of the bacteria in the shower water were Gram-negative. The dominant bacterial families with a relative abundance of ≥10% of the total (non-chlorinated and chlorinated) communities were Flavobacteriaceae (24-21%), Xanthomonadaceae (23-24%), Moraxellaceae (12-11%) and Pseudomonadaceae (10-22%). The relative abundance of Pseudomonadaceae increased after chlorination and increased even more with longer contact times at 1 mg Cl2L-1. Therefore, Pseudomonadaceae were suggested to be relatively more chlorine resistant than the other identified bacteria. To determine which bacteria could survive chlorination causing a potential health risk, the relative abundance of the intact cell community was characterized before and after chlorination. The dominant bacterial families in the intact community (non-chlorinated and chlorinated) were Xanthomonadaceae (21-17%) and Moraxellaceae (48-57%). Moraxellaceae were therefore more chlorine resistant than the other identified intact bacteria present.


Assuntos
Bactérias/crescimento & desenvolvimento , Halogenação , Microbiologia da Água , Purificação da Água , Cloro , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA